
Intermittent switching for three repulsively coupled oscillators

Kentaro Ito
Department of Mathematics, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan

Yasumasa Nishiura
Research Institute for Electronic Science, Hokkaido University, Sapporo 060-0812, Japan

�Received 20 October 2007; revised manuscript received 4 February 2008; published 28 March 2008�

We study intermittent switching behaviors in a system with three identical oscillators coupled diffusively and
repulsively, to clarify a bifurcation scenario which generates such intermittent switching behaviors. We use the
Stuart-Landau oscillator, which is a general form of Hopf bifurcation, and can describe both cases: limit cycle
and inactive �i.e., non-self-oscillatory� cases. From a numerical study of the bifurcation structure, two different
routes to chaos which has S3 symmetry were found. One is the sudden appearance of chaos as Pomeau-
Manneville intermittency, which is found for the inactive case. In this case a trajectory shows switching among
three mutually symmetric tori when a parameter exceeds critical value. The other route, which appears for the
limit cycle case, consists of two parts: First, chaos with lower symmetry appears through period doubling, and
after the two successive attractor-merging crises, chaos which has S3 symmetry appears. At each crisis, the
attractor changes its symmetry.
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I. INTRODUCTION

Coupled nonlinear oscillators show a rich variety of col-
lective phenomena such as synchronization �1,2�, clustering
�3� and chaos �4�, and are widely studied not only theoreti-
cally, but also experimentally �5–8�. In this regard, one area
of interest is in spontaneous transitions among several states.
For example, some periodic oscillating patterns which have
spatiotemporal symmetry have been observed in the three
coupled biological oscillators comprising the plasmodial
slime mold �5,6�. In this system, slime mold shows an
oscillating pattern for a long time, however, after a while it
shows switching to different oscillating patterns. Similar
switching behavior is also observed in a system with the
three coupled oscillators in Belousov-Zhabotinsky �BZ� re-
action systems �7�.

One explanation of such a switching behavior is chaotic
itinerancy �9�. Chaotic itinerancy is a concept to describe a
dynamical behavior which shows chaotic transitions among
low dimensional ordered states. The switching behavior of-
ten appears for a system with coupled chaotic elements and a
system with a large number of coupled periodic elements.
However, the switching behavior is less studied for a small
number of coupled periodic elements. In the present paper,
we propose a model with three coupled oscillators, which
shows intermittent switching behaviors. We employ an ide-
alized amplitude model for each oscillator, to investigate the
relation between the appearance of switching behavior and
the characteristic property for the oscillator itself. We clarify
the bifurcation scenarios leading to the switching behaviors
in the system by changing the intensity of amplitude depen-
dency of the oscillators.

In most studies, collective behavior of globally coupled
oscillators has been studied by using the phase model �10�,
because the phase model is a good approximation of coupled
limit cycle oscillators for weak coupling. It is known that
systems with three weakly coupled oscillators �11–13� show
a rich variety of solutions. If the phase oscillators are iden-

tical �12�, heteroclinic bifurcations may occur. However, the
system does not show any chaotic motion if the coupling
term depends only on phase difference. On the other hand,
switching behaviors have been observed in three coupled
biological oscillators comprised of the plasmodial slime
mold �5,6� and the three coupled oscillators in BZ reaction
systems �7�. In those experiments, each oscillator is periodic
without coupling. Thus strong coupling and/or amplitude de-
pendency seems to be necessary to obtain switching behavior
for coupled identical limit cycle oscillators. We employ the
idealized amplitude model, the Stuart-Landau oscillator, for
each element because the Stuart-Landau equation has an am-
plitude dependency on phase velocity, and the intensity of
the amplitude dependency can be controlled by a parameter
�. Collective behaviors for N identical Stuart-Landau oscil-
lators diffusively coupled have been studied �4,14�. For N
=3, characteristic frequencies were investigated in a certain
parameter range with a complex coupling constant. Transi-
tions from periodic motion to doubly periodic motion and
doubly periodic motion to chaotic motion are reported �14�.
However, a detailed bifurcation structure has not been stud-
ied, and a switching behavior near the bifurcation point has
also not been previously reported.

We study a system with three oscillators coupled repul-
sively. We call the coupling attractive if a pair of coupled
oscillators prefer to have the same state variable, and repul-
sive if they prefer to have different state variables. Purely
repulsive coupling has been less studied �3,15,16� than at-
tractive coupling since entrainment of oscillators is one of
the main interests in the field of coupled oscillators. Repul-
sive coupling becomes important when the sum of the state
variables associated with the individual oscillators tends to
keep a constant value, for example, saline oscillators �17�
and slime mold oscillators �5�.

To study the bifurcation structure, we follow branches of
solutions by numerical continuation using AUTO �18�, a soft-
ware for continuation and bifurcation problems. Both for the
inactive �i.e., non-self-oscillatory� case and for the limit
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cycle case, we find the chaos which has S3 symmetry, how-
ever, the routes to chaos are different. For the inactive case,
chaos appears suddenly as Pomeau-Manneville intermit-
tency, and a trajectory shows switching among three mutu-
ally symmetric tori when a parameter exceeds the critical
point. On the other hand, the appearance of S3 symmetric
chaos for the limit cycle case consists of two parts: first,
chaos with lower symmetry appears through period-doubling
bifurcations, and two successive attractor-merging crises
gives the chaos with S3 symmetry. After the second attractor
merging crisis, a trajectory shows switching among three
chaotic regions. This phenomenon can be explained by
crisis-induced intermittency �19�. Crisis-induced intermit-
tency is that intermittent switching among chaotic states after
interior crisis or attractor-merging crisis �19�. For crisis-
induced intermittency an orbit stays near one of the old at-
tractors which existed before the crisis for a long time, after
which it abruptly switches to a region of another ruin of the
old attractors.

We investigate the relation between the switching among
three tori and the switching among three chaotic regions. The
switching among three tori can be explained as follows.
Switching among three chaotic regions appears at any pa-
rameter for S3 symmetric chaos, and the orbit often passes
through the neighborhoods of the three tori. Resident time
for each chaotic region becomes short if the parameter is far
from the attractor-merging crisis. On the other hand, resident
time for the neighborhood of the torus becomes longer if the
linear instability of the torus is small, and becomes dominant
if the linear instability is sufficiently small. This situation
corresponds to switching among three tori.

This paper is organized as follows. In Sec. II we show our
model equations: three repulsively coupled Stuart-Landau
oscillators. In Sec. III the bifurcation structure for the inac-
tive case is investigated. Intermittent switching among the S2
tori is also discussed. In Sec. IV we investigate the bifurca-
tion structure of the S2 torus solution for the limit cycle case.
Period doubling routes to chaos and attractor merging crises
are shown. Section V discusses the relation between the
switching behaviors observed in Secs. III and IV.

II. MODEL

We consider the following coupled Stuart-Landau oscilla-
tors �10�:

ż j = �� + i�zj − �1 − i���zj�2zj + ��
n=1

N

�zn − zj� , �1�

where N=3. The variable zj, which describes the state of the
jth element, is a complex number. � is a parameter specify-
ing the distance from the Hopf bifurcation, � represents the
amplitude dependency of phase velocity, and ��0 is the
coupling strength.

In this model each oscillator is coupled to every other
oscillator. Note that due to the symmetry, if one oscillating
solution exists, then other oscillating solutions, obtained by
permuting �z1 ,z2 ,z3�, also exist. We define amplitude rj and
phase � j as rj ��zj� and � j �arg zj, respectively.

Without coupling, each element zj converges to the limit
cycle whose amplitude is �� if ��0, and settles down to the
fixed point zj =0 if ��0. For attractive coupling ��0, the
complete synchronized state z1=z2=z3 is stable. The dynam-
ics of oscillators are more complicated for repulsive coupling
where ��0. Without loss of generality, we examine �=−1
and �=1, both with ��0.

If one of z1, z2, and z3 is not 0, we can reduce the system
to the one with lower dimension. Equation �1� can be rewrit-
ten as the following equation:

wj = �� − �wj�2 + i���wj�2 − �w3�2��wj

+ ��
n=1

3 	wn − wj − iwj
Im wn

w3

 , �2�

where wj �zje
−i�3 =rje

i	j3 and 	 jk�� j −�k. This equation
consists of five real variables, because the imaginary part of

3 becomes 0.

Due to a shift invariance of the form ��1 ,�2 ,�3�→ ��1
+c ,�2+c ,�3+c�, steadily rotating solutions in Eq. �1� corre-
spond to fix point solutions of Eq. �2�, and quasiperiodic
solutions of Eq. �1�, which arise from the secondary Hopf
�Neimark-Sacker� bifurcation of steadily rotating solutions,
correspond to periodic solutions of Eq. �2�. Hence we follow
a branch of the periodic solution of Eq. �2� instead of the
corresponding quasiperiodic solution of Eq. �1�. In the fol-
lowing sections, the Hopf and secondary Hopf bifurcations
are discussed, however, we omit “secondary” if there is no
misunderstanding.

III. INACTIVE CASE �=−1

Let us first consider the case of �=−1. In this case, when
there is no coupling, each element does not have a limit
cycle.

A. Periodic solutions

First, we show several periodic solutions, and how they
bifurcate. Figure 1 shows a phase diagram of Eq. �1� ob-
tained by AUTO. We found roughly five types of solutions in
�� ,�� parameter space and refer to these as trivial fixed
point, rotating, partial antiphase, quasiperiodic, and chaotic.
Even finer structure exists around a boundary of region II in
Fig. 1 but we did not study this. A trivial fixed point z1=z2
=z3=0 is stable for ��−1 /3. For ��−1 /3, the trivial fixed
point becomes unstable from the stability analysis of Eq. �1�,
and three types of periodic solutions, namely, stable rotating,
unstable partial antiphase, and unstable partial in-phase,
emerge from the bifurcation point of the trivial fixed point at
�=−1 /3.

For general globally coupled identical elements, Theorem
4.1 from Chap. XVIII in Ref. �20� proves that rotating, par-
tial antiphase, and partial in-phase solutions appear if the
in-phase solution �z1=z2=z3� does not bifurcate from the
Hopf bifurcation point of the trivial fixed point.

A rotating solution exists for ��−1 /3 and is stable in
region II of Fig. 1. The rotating solution is obtained analyti-
cally from Eq. �1�, and is written as
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„z1�t�,z2�t�,z3�t�… = „f�t�, f�t�e−2�i/3, f�t�e−4�i/3
… , �3�

where f�t��Rei(�1+�R2�t+�0), R���−3�. The rotating solu-
tion becomes unstable through a secondary Hopf bifurcation.
The Hopf bifurcation line is illustrated as the upper boundary
of region II in Fig. 1. An unstable quasiperiodic solution
emerges from the Hopf bifurcation point. An inset of Fig. 1
shows that the rotating solution is stable if � is sufficiently
near the Hopf bifurcation point �=−1 /3. Clearly the effect
of amplitude dependency will be very small for the rotating
solutions of Eq. �3� in this region since R will be small.

A partial antiphase solution can be written as

„z1�t�,z2�t�,z3�t�… = „0, f�t�,− f�t�… . �4�

A partial antiphase solution is stable in region III. Note
that region III is not in contact with region I in Fig. 1. A
partial antiphase solution is unstable if � is sufficiently near
−1 /3 as shown in the inset of Fig. 1. The boundary of region
III corresponds to secondary Hopf bifurcation points of the
partial antiphase solution.

A partial in-phase solution is a periodic solution in which
two elements have the same position, i.e., zi=zj. A partial
in-phase solution exists if ��−1 /3 and is always unstable.

B. First route to S3 chaos: From S2 torus to S3 chaos

A quasiperiodic solution appears in region IV in Fig. 1.
The boundary line between region III and region IV is the
secondary Hopf bifurcation point of the partial antiphase so-
lution. Decreasing � from region III to region IV, a new
oscillation mode appears. A time series of the quasiperiodic
solution near the Hopf bifurcation point is shown in Figs.

2�a� and 2�b�. Figure 2�a� shows that two elements oscillate
with large amplitude with time period T. The orbit of the
solution on a coordinate which is rotating with �3 is shown
in Fig. 2�c�, where �i is the mean phase velocity of �i. Fig-
ure 2�c� shows that the phase difference between them is
around �. It can also be seen from Fig. 2�a� that the other
element with smaller amplitude oscillates with a different
frequency. The mean phase velocities for elements obey the
following relations: �1=�3−2� /T and �2=�3. The periods
T and 2� /�3 are the characteristic periods for the quasiperi-
odic solution.

Although this solution is quasiperiodic in fixed coordi-
nates �z1 ,z2 ,z3�, Fig. 2 shows that amplitude rj and phase
difference 	ij of the quasiperiodic solution oscillate periodi-
cally. This is related to the fact that the partial antiphase
solution corresponds to a fixed point in Eq. �2�, as mentioned
in the previous section. The quasiperiodic solution corre-
sponds to a periodic solution of Eq. �2�, and the period of the
this solution is same as the one of �r1 ,r2 ,r3� �Fig. 2�b��.
From a viewpoint of symmetry, Fig. 2�b� shows that r2, r3
oscillate at a time period of T with a half-period time lag, and

β

5.1

5.2

-0.36 -0.34 -0.32

6

8

10

12

14

4

2

0
−4 −3 −2 −1 0

κ
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r1 oscillates at a period of T /2. The attractor is invariant
under permutation �z1 ,z3� and so we refer to the attractor as
an S2 torus for convenience. Sn represents the symmetric
group consisting of all permutations of n elements. The S2
torus solution is stable in region IV and becomes unstable in
region V as � passes through the boundary between regions
IV and V due to a subcritical pitchfork bifurcation at the
boundary.

A chaotic solution emerges in the region illustrated as
region V in Fig. 1. A time series of the chaotic solution is
illustrated in Fig. 3. Figure 3 shows intermittent switching
among three states, each of which corresponds to an unstable
S2 torus. The switching behavior is as follows. One element
oscillates in a small amplitude orbit for a long time. At the
end of this time the element leaves the small amplitude orbit
and another element takes its place. In other words, the tra-
jectory exhibits intermittent switching among three S2 tori in
phase space. The trajectory often visits the same S2 torus in
succession, however, the order in which the S2 tori are vis-
ited seems random.

C. Average laminar length

We study the average laminar length of the switching so-
lution close to the critical point �c. The average laminar
length �l� of this intermittency scales as follows �21�:

�l� 
 �� − �c�−� �5�

for � close to the critical bifurcation point �c. The scaling
factor � is called a critical exponent. We adopt a surface r2

=r3 as a Poincaré section and plot the point �w1 ,w2 ,w3�
when the trajectory crosses it with ṙ3− ṙ2�0. We call that the
system is in the laminar state when it is in a certain neigh-
borhood of the unstable S2 torus. The result of numerical
simulation depicted in Fig. 4 shows �
1. In general, inter-
mittency was distinguished by the three types of bifurcation
points �22�: type I, saddle node bifurcation; type II, subcriti-
cal Hopf bifurcation; and type III, subcritical period-
doubling bifurcation. These types of intermittency are known
as Pomeau-Manneville intermittency. The critical exponent �
is 0.5 for type I intermittency and 1 for type II and type III
intermittencies. In this case the critical bifurcation point is a
subcritical pitchfork bifurcation of the S2 torus solution. The
intermittency after the pitchfork bifurcation does not belong
to type I, II, or III. However, we can apply the analysis of
type III intermittency to our system. In general, if period-
doubling bifurcation takes place for a one-dimensional map
M, the pitchfork bifurcation takes place for the two times
iterated map M2. Therefore the probability distribution for
the laminar length can be estimated by the same procedure as
for type III intermittency �23�, which gives �=1. This value
of � matches the result of our numerical experiment. From
the viewpoint of symmetry, a chaotic attractor which corre-
sponds to the switching trajectory has S3 symmetry; invariant
from permutation �z1 ,z2 ,z3�. We call the S3 symmetric cha-
otic attractor S3 chaos for convenience. In this section we
observed the following route to chaos: trivial fixed point
→partial antiphase→S2 torus→S3 chaos. In the next sec-
tion we discuss the structure of S3 chaos for �=1.

IV. LIMIT CYCLE OSCILLATOR CASE �=1

In this section we consider the case of �=1. For �=1,
each element has a limit cycle when there is no coupling
term. We will discuss other switching behaviors which show
switching among chaotic states. We define the S1 torus as a
torus which is not invariant for any permutation of �z1 ,z2 ,z3�
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except the identity permutation. The S1 torus is bifurcated
from the symmetry breaking pitchfork bifurcation of the S2
torus. To show the second route to the switching behavior,
we focus on bifurcations of the S2 torus, S1 torus, and chaotic
attractors originating from the S1 torus.

A. Bifurcations from S2 torus to S1 torus

First, we follows a branch of S2 torus which is the start
point of the route to chaos. Figure 5 shows a two-parameter
bifurcation diagram for the S2 torus. The S2 torus is stable in
region IV, and was obtained by following the S2 torus solu-
tion from �=−1 to �=1. Unlike the result for �=−1, there is
no secondary Hopf bifurcation point which generates an S2
torus for �=1. Furthermore, trivial fixed point and partial
antiphase solutions are unstable at any �� ,��. Before we
discuss the detail of the bifurcation structure, we make some
comments on the solutions which are not related to this
route. We note that the other types of stable solutions, rotat-
ing solution described in Eq. �3� and quasiperiodic solution
bifurcated from the rotating solution, also exist in a part of
the parameter space shown in Fig. 5. A trajectory of the
quasiperiodic solution is on a torus which is invariant under
a cyclic permutation �i.e., Z3 symmetric�. We confirm that
those periodic and quasiperiodic solutions, except for the S1
torus, are unstable above the upper boundary of region IV,
which is labeled PF in Fig. 5, by following the branches
numerically.

We consider the bifurcation structure of an S2 torus which
is invariant under a permutation �z2 ,z3�. If � is increased
from within region IV then the S2 torus becomes unstable
when � passes through the pitchfork bifurcation point of the
S2 torus. The pitchfork bifurcation points correspond to the

upper solid boundary line of region IV in Fig. 5. The lower
solid boundary line to the left of point P is also a pitchfork
bifurcation line of the S2 torus. The pitchfork bifurcation line
on the upper boundary is supercritical for ��−1.19 and sub-
critical for ��−1.19. A region where stable S1 tori exist is
illustrated by the gray region in Fig. 5. For ��−1.19 stable
S1 tori bifurcate from the supercritical pitchfork bifurcation
points, whereas for ��−1.19 the branches are unstable. For
−3.76���−1.19 �Fig. 6�b��, the branches of unstable S1
tori fold and become stable from saddle-node bifurcations.
For ��−3.76 �Fig. 6�a��, branches of S1 tori, which bifur-
cated from the upper boundary line of region IV, connect to
the branch which bifurcated from the lower solid boundary.

A boundary labeled HC exists above the point P. Here we
mention about the S2 torus near the boundary labeled HC in
Fig. 5 only briefly. As � approaches to HC from the left, the
S2 torus approaches two unstable partial in-phase solutions,
and the trajectory spends increasingly longer times passing
through the neighborhoods of partial in-phase solutions. For
example, if the S2 torus is invariant under a permutation
�z2 ,z3�, the orbit approaches two unstable solutions; one is
characterized by z1=z2 and the other one is characterized by
z1=z3. On reaching HC the S2 torus becomes a heteroclinic
cycle connecting the pair of partial in-phase solutions.

B. Period doubling route to S1 chaotic attractor

We investigate the bifurcation diagram of a stable S1 torus
at �=−3.7 �Fig. 7�. As � is increased period-doubling bifur-
cations occur on a stable S1 torus branch. The first period-
doubling bifurcation line �PD� is illustrated in Fig. 5. An
inset of Fig. 7 shows that the stable S1 torus develops into a
chaotic attractor after period-doubling bifurcations. We call
this attractor, which is not invariant for any permutation of
�z1 ,z2 ,z3� except the identity permutation, an S1 chaotic at-
tractor for convenience.

C. Attractor-merging crisis I: From S1 chaotic attractors to S2

chaotic attractor

Although each S1 chaotic attractor is not symmetric itself,
a pair of S1 chaotic attractors which originally bifurcated
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from the same S2 torus is mutually symmetric, because of the
symmetry of the system. The total number of S1 chaotic at-
tractors is 6 since three pairs exist. Increasing �, the distance
between a pair of S1 chaotic attractors decreases until the
distance goes to zero and a crisis occurs at �1. Figure 8
shows two S1 chaotic attractors simultaneously colliding
with an S2 torus which is on the basin boundary between
them, as � passes through �1. As � exceeds the critical value
�1, the two mutually symmetric S1 chaotic attractors will
merge into one attractor which has S2 symmetry: invariant
under a permutation of �z2 ,z3�. This type of global bifurca-
tion is called an attractor-merging crisis �19�.

The attractor-merging crisis induces intermittent switch-
ing between two chaotic attractors which exist before the
crisis. The trajectory spends a long time � in a region where
the attractor existed before the crisis. After this time the orbit

moves to the region where the other attractor previously ex-
isted. Figure 9 shows intermittent switching among two cha-
otic states. It can be seen that each chaotic state consists of
short laminar phases, which stay near one of the two original
S2 tori branches, and burst phases. This property persists
even when � is not near �1. Figure 10 shows that the average
transient lifetime ��� scales as follows:

��� 
 �� − �1�−� �6�

for � close to �1.

D. Attractor-merging crisis II: From S2 chaotic attractors
to S3 chaos

Since this system has S3 symmetry, there are three iso-
lated S2 chaotic attractors for �1����2. As � exceeds �2,
the three mutually symmetric attractors are replaced by one
large S3 symmetric attractor, which is invariant to permuta-
tion �z1 ,z2 ,z3�. We refer to the large S3 symmetric attractor
as S3 chaos as in the previous section.

For � slightly larger than �2, the trajectory of S3 chaos
shows intermittent switching among the three S2 chaotic re-
gions which correspond to S2 chaotic attractors before the
crisis, as shown in Fig. 11. ��2� which represents the average
lifetime of an S2 chaotic region, becomes smaller with in-
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creasing �−�2. When the trajectory is in an S2 chaotic re-
gion, it shows switching among two S1 chaotic regions, and
frequently passes near the S2 torus which exists between
them, just as the trajectory on an S2 chaotic attractor did.
Note that these properties of the switching behavior are also
observed if � is substantially larger than �2.

E. Symmetry transitions

To investigate how the symmetry of the attractor changes
through the bifurcation diagram, we focus the following
properties of the symmetry: For S3 chaos, �r1�= �r2�= �r3�
holds. On the other hand, for S2 chaos and torus, there exists
j, k, and l with j�k and k� l such that �rj�= �rk�� �rl�. We
introduce the order parameters P1���r1+r2e2�i/3+r3e4�i/3��
and P2���r1−r2��r2−r3��r3−r1��. P1 becomes 0 if the attrac-
tor is invariant under any permutation of elements. Therefore
P1 is assumed to be the index of S3 symmetry for the attrac-
tor. P2 becomes 0 if the attractor is invariant under a permu-
tation of one pair of elements �zj ,zk�, therefore P2 is assumed
to be the index of S2 symmetry. For Sn chaotic attractors, P1
and P2 obey the following relations:

S3 chaos: P1 = 0, P2 = 0,

S2 chaotic attractor: P1 � 0, P2 = 0,

S1 chaotic attractor: P1 � 0, P2 � 0, �7�

Figure 12 shows that P1 jumps down to 0 as � exceeds
�2, and P2 jumps down to 0 as � exceeds �1. This results
imply that the symmetry of attractor changes from S1 to S2 as
� exceeds �1, and from S2 to S3 and as � exceeds �2, re-
spectively. Sharp peaks of P1 and P2 correspond to windows
of the bifurcation diagram as shown in Fig. 12. For example,
S1 and S2 symmetric tori appear at �=12.650, 13.102, re-
spectively.

V. DISCUSSION

We have presented several oscillating patterns and switch-
ing behaviors in three repulsively coupled Stuart-Landau
equations. The number of the dimensions for our model is
essentially 5. This model could be one of the simplest mod-
els which shows intermittent switching among three and
more states. For sufficiently small �, the rotating solution is
the only stable solution. For large �, S2 torus and chaotic
solutions appear. Our result implies that chaotic element and
external noise are not necessary for the switching behaviors.
For three globally coupled identical oscillators, it can be said
that spontaneous switching behavior may occur when the
amplitude dependency and repulsive coupling are suffi-
ciently strong.

We reported two different routes to S3 chaos for large �.
One route is S2 torus→S3 chaos for �=−1 �Fig. 13�b��. In
this route, intermittent switching among three S2 tori are ob-
served, and the average time between bursts scales as a
power law in the difference of a parameter from its critical
value. The other route consists of two parts. The first part is
the creation of chaotic attractors through the period-doubling
cascade: S2 torus→S1 torus→S1 chaotic attractor. The sec-
ond part is two successive attractor-merging crises: S1 cha-
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otic attractor→S2 chaotic attractor→S3 chaos, for �=1 �Fig.
13�a��.

In the first route to S3 chaos we found that the time series
of an S3 chaotic attractor showed switching among three
laminar states near the pitchfork bifurcation point of the S2
torus. Each laminar state corresponds to the neighborhood of
an S2 torus. In each laminar state, one element oscillates with
a small amplitude and the other two elements oscillate with a
large amplitude. We can explain the intermittent switching
among S2 tori �Fig. 3� as follows. We are far from the pa-
rameter regime where S2 chaotic attractors merge into S3
chaos. The trajectories therefore easily switch among S2 cha-
otic regions. On the other hand, from the weak linear insta-
bility of the S2 torus, the average lifetime of a laminar state
which corresponds to an S2 torus becomes large near the
pitchfork bifurcation point. Due to the structure of the S2
chaotic region that contains the S2 torus, the laminar state
therefore becomes dominant in each S2 chaotic region and it
is also dominant in the time series �Fig. 3� if the set of
parameters is sufficiently near the bifurcation point.

To show the continuity of S3 chaos from �=−1 to �=1,
we perform the following transformation. If �−3��0, Eq.
�1� can be transformed to the following form:

dZj

dt�
= 	1 +

i�

�

Zj − �1 − i���Zj�2Zj + ��

n=1

N

Zn, �8�

where Zj ���−3�zj, t����−3��t, ��� / ��−3��.
��−1 /3 corresponds to ��−1 /3 at �=−1, and ��−1 /3
corresponds to ��0 at �=1. �=−1 /3 corresponds to the
limit �→� at �= �1. Figure 14 shows a one-parameter bi-
furcation diagram of an S2 torus at �=12.0. It shows two
routes to the onset of S3 chaos which then seems to be con-
tinuous within the intermediate region.

As mentioned in Sec. II, for the S2 torus, one element
oscillates with smaller amplitude, and the other two elements
oscillate with larger amplitude. This type of separation of
elements is an important role in our system. The study of
whether separation of elements has an important role for
coupled N oscillator systems, and detailed global bifurcation
analyses of these systems, will be interesting future work.
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